How to evenly distribute points on a sphere more effectively than the canonical Fibonacci Lattice

Mapping the Fibonacci lattice (aka Golden Spiral, aka Fibonacci Sphere) onto the surface of a sphere is an extremely fast and effective approximate method to evenly distribute points on a sphere. I show how small modifications to the canonical implementation can result in notable improvements for nearest-neighbor measures. 

Figure 1. A simple modification to the canonical Fibonacci lattice can result in an improvement of up to 8.

Continue reading “How to evenly distribute points on a sphere more effectively than the canonical Fibonacci Lattice”

How to generate uniformly random points
on n-spheres and in n-balls

For many Monte Carlo methods, such as those in graphical computing, it is critical to uniformly sample from $d$-dimensional spheres and balls. This post describes over twenty different methods to uniformly random sample from the (surface of) a $d$-dimensional sphere or the (interior of) a $d$-dimensional ball.

Continue reading “How to generate uniformly random points on n-spheres and in n-balls”